Analisis Performansi Naive Bayes Dan Random Forest Terhadap Sentimen Kenaikan Harga BBM di Indonesia
Abstract
Bahan Bakar Minyak (BBM) adalah komoditas penting dalam aktifitas perekonomian masyarakat. Kebijakan kenaikan harga BBM dapat berpengaruh negatif terhadap pertumbuhan ekonomi masyarakat. Namun pemerintah melakukan berbagai upaya baik, seperti Bantuan Langsung Tunai BBM. Fenomena ini menimbulkan beragam sentimen di masyarakat. Beragam sentimen tersebut dapat menjadi tolak ukur pemerintah dalam mengambil keputusan. Oleh karena itu, digunakan algoritma Naïve Bayes Classifier (NBC) dan Random Forest (RF) untuk klasifikasi sentimen masyarakat terhadap kebijakan kenaikan harga BBM melalui data teks Twitter yang berjumlah 250 ribu data tweet. Label kelas sentimen meliputi positif, netral, dan negatif. Analisis performasi dilakukan pada masing-masing algoritma dengan mempertimbangkan nilai accuracy, recall, dan rata-rata nilai kurva AUC-ROC. Kedua algoritma akan melalui proses tuning hyperparameter, untuk NBC yaitu nilai laplace smoothing dan untuk RF yaitu nilai minimum samples split dan minimum samples leaf. Disimpulkan bahwa performa RF lebih unggul dengan nilai akurasi mencapai 85.15% dan rata-rata nilai AUC-ROC sebesar 94.62%., dibandingkan NBC dengan nilai akurasi 79.74% dan rata-rata AUC-ROC sebesar 89.83%.
References
Latif, A. (2015). Dampak Fluktuasi Harga Bahan Bakar Minyak Terhadap Suplai Sembilan bahan Pokok di pasar Tradisional. Al-Buhuts, 11(1), 91-116.
“Presiden: BLT BBM dan BSU Lakukan secara Mudah, Cepat, dan Tepat Sasaran.” https://www.kemenkeu.go.id/informasi-publik/publikasi/berita-utama/Presiden-BLT-BBM-dan-BSU-Lakukan-secara-Mudah (accessed Feb. 28, 2023).
Wongkar, M., & Angdresey, A. (2019, October). Sentiment analysis using Naive Bayes Algorithm of the data crawler: Twitter. In 2019 Fourth International Conference on Informatics and Computing (ICIC) (pp. 1-5). IEEE.
Pranckevičius, T., & Marcinkevičius, V. (2017). Comparison of naive bayes, random forest, decision tree, support vector machines, and logistic regression classifiers for text reviews classification. Baltic Journal of Modern Computing, 5(2), 221.
Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media.
S. Kannan et al., “Big Data Analytics for Social Media,” Big Data: Principles and Paradigms, pp. 63–94, Jan. 2016, doi: 10.1016/B978-0-12-805394-2.00003-9.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093-1113.
Karthika, P., Murugeswari, R., & Manoranjithem, R. (2019, April). Sentiment analysis of social media network using random forest algorithm. In 2019 IEEE international conference on intelligent techniques in control, optimization and signal processing (INCOS) (pp. 1-5). IEEE.
Bonta, V., & Janardhan, N. K. N. (2019). A comprehensive study on lexicon based approaches for sentiment analysis. Asian Journal of Computer Science and Technology, 8(S2), 1-6.
Damaratih, D. A. (2021, October). Sentiment analysis of online lecture opinions on twitter social media using naive bayes classifier. In 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE) (pp. 24-28). IEEE.
Singh, G., Kumar, B., Gaur, L., & Tyagi, A. (2019, April). Comparison between multinomial and Bernoulli naïve Bayes for text classification. In 2019 International Conference on Automation, Computational and Technology Management (ICACTM) (pp. 593-596). IEEE.
Aggarwal, C. C. (2015). Data mining: the textbook (Vol. 1). New York: springer.
Mantovani, R. G., Horváth, T., Cerri, R., Junior, S. B., Vanschoren, J., & de Carvalho, A. C. P. D. L. F. (2018). An empirical study on hyperparameter tuning of decision trees. arXiv preprint arXiv:1812.02207.
Carrington, A. M., Manuel, D. G., Fieguth, P. W., Ramsay, T., Osmani, V., Wernly, B., ... & Holzinger, A. (2021). Deep ROC analysis and AUC as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:2103.11357.
Full Text: PDF
Refbacks
- There are currently no refbacks.