Penerapan Metode K-Means dalam Pengelompokan Jumlah Kasus Penderita Covid-19 di Dunia

Muhamad Raihan Ramadhani Isworo, Anya Ningrum Nur’afifah, Kesya Nursyahada, Ananda Azra Razali

Abstract


Penelitian untuk mengelompokkan jumlah kasus COVID-19 di dunia dengan menggunakan metode K-Means Klustering, yaitu teknik dalam data mining yang sangat efektif untuk mendeteksi pola dalam dataset yang besar. Data yang dipergunakan diambil dari situs Worldometers pada 13 Oktober 2024, mencakup 231 negara di seluruh dunia. Untuk menentukan jumlah kluster yang paling tepat, studi ini menerapkan metode Elbow, dengan perhitungan yang didasarkan pada nilai Sum of Squared Errors (SSE). Hasil analisis memperlihatkan penurunan SSE yang paling mencolok dari k=1 ke k=2, serta penurunan signifikan yang berlanjut hingga k=3. Setelah k=3, penurunan SSE mulai melambat, yang menunjukkan bahwa tiga kluster adalah jumlah yang paling tepat untuk pengelompokan ini. Selanjutnya, evaluasi kualitas pengelompokan menggunakan Silhouette Score menghasilkan nilai 0.9186, yang menunjukkan bahwa hasil klustering sangat baik, dengan objek-objek dalam satu kluster memiliki kemiripan yang tinggi dan terpisah dengan jelas dari kluster lain.


Full Text: PDF

Refbacks

  • There are currently no refbacks.