DETEKSI KELELAHAN MENTAL DENGAN MENGGUNAKAN SINYAL EEG SATU KANAL

Muhammad Afif Hendrawan

Abstract


Kondisi kelelahan mental dapat menimbulkan kecelakaan kerja khususnya pada bidang pekerjaan dengan tingkat konsentrasi tinggi. Kondisi ini perlu ditangani dengan serius untuk menghindari risiko kecelakaan kerja. Banyak metode dikembangkan untuk mengukur tingkat kelelahan mental. Namun pengukuran fisiologis dianggap lebih obyektif dan akurat. Sinyal gelombang otak atau electroencephalogram (EEG) merupakan biosinyal yang digunakan sebagai alat ukur fisiologis. Akan tetapi, pemanfaatannya belum banyak diteliti. Penelitian ini memanfaatkan sinyal EEG satu kanal dikombinasikan dengan segmentasi untuk mendeteksi kondisi kelelahan mental. Ciri mean absolute value (MAV), absolute power (AVP), dan standar deviasi (SD) diambil dari setiap segmen. Algoritma klasifikasi Linear Discriminant Analysis (LDA) dan Support Vector Machine (SVM) digunakan untuk mengklasifikasikan kondisi kelelahan mental. Hasil penelitian didapatkan nilai akurasi sebesar 78,13%. Nilai tersebut didapatkan dengan memanfaatkan sinyal EEG dengan segmentasi 60 detik menggunakan Fisher LDA. Penelitian ini menunjukkan sinyal EEG dapat digunakan untuk mendeteksi kondisi kelelahan mental dengan baik meskipun menggunakan ekstraksi ciri sederhana.

 

 

DOI : https://doi.org/10.33005/sibc.v14i2.2654


References


E. Grandjean, “Fatigue in industry.,” British Journal of Industrial Medicine, vol. 36, no. 3, pp. 175–186, 1979.

I. D. Brown, “Driver fatigue,” Human Factor, vol. 36, no. 2, pp. 298–314, 1994.

S. K. L. Lal and A. Craig, “A critical review of the psychophysiology of driver fatigue,” Biological Psychology, vol. 55, no. 3, pp. 173–194, 2001.

A. Maglione et al., “Evaluation of the workload and drowsiness during car driving by using high resolution EEG activity and neurophysiologic indices,” 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 6238–6241, 2014.

L. B. Krupp, N. G. Larocca, J. Muir Nash, and A. D. Steinberg, “The fatigue severity scale: Application to patients with multiple sclerosis and systemic lupus erythematosus,” Archives of Neurology, vol. 46, no. 10, pp. 1121–1123, 1989.

E. Åhsberg, F. Gamberale, and A. Kjellberg, “Perceived quality of fatigue during different occupational tasks development of a questionnaire,” International Journal of Industrial Ergonomics, vol. 20, no. 2. pp. 121–135, 1997.

J. A. Stern, D. Boyer, and D. J. Schroeder, “Blink Rate As a Measure of Fatigue : A Review,” Oklahoma City, 1994.

R. N. Roy, S. Charbonnier, and S. Bonnet, “Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms,” Biomedical Signal Processing and Control, vol. 14, pp. 256–264, 2014.

Y. Kato, H. Endo, and T. Kizuka, “Mental fatigue and impaired response processes: Event-related brain potentials in a Go/NoGo task,” International Journal of Psychophysiology, vol. 72, no. 2, pp. 204–211, 2009.

R. Langner, M. B. Steinborn, A. Chatterjee, W. Sturm, and K. Willmes, “Mental fatigue and temporal preparation in simple reaction-time performance,” Acta Psychologica, vol. 133, no. 1, pp. 64–72, 2010.

W. Guo, J. Ren, B. Wang, and Q. Zhu, “Effects of relaxing music on mental fatigue induced by a continuous performance task: Behavioral and ERPs evidence,” PLoS ONE, vol. 10, no. 8, pp. 1–12, 2015.

M. W. G. Dye, C. S. Green, and D. Bavelier, “Increasing speed of processing with action video games,” Current Directions in Psychological Science, 2009.

S. Ahmed, K. Babski-Reeves, J. DuBien, H. Webb, and L. Strawderman, “Fatigue differences between Asian and Western populations in prolonged mentally demanding work-tasks,” International Journal of Industrial Ergonomics, vol. 54, pp. 103–112, 2016.

R. Chai, Y. Tran, G. R. Naik, and S. Member, “Classification of EEG based-Mental Fatigue using Principal Component Analysis and Bayesian Neural Network,” pp. 4654–4657, 2016.

F. Wang, J. Lin, W. Wang, and H. Wang, “EEG-based mental fatigue assessment during driving by using sample entropy and rhythm energy,” pp. 1906–1911, 2015.

J. Liu, C. Zhang, and C. Zheng, “Biomedical Signal Processing and Control EEG-based estimation of mental fatigue by using KPCA – HMM and complexity parameters,” vol. 5, pp. 124–130, 2010.

Z. Qian, X. Wang, C. Lan, and W. Li, “Analysis of Fatigue with 3D TV Based on EEG,” no. 61171059, pp. 306–309, 2013.

B. T. Jap, S. Lal, P. Fischer, and E. Bekiaris, “Using EEG spectral components to assess algorithms for detecting fatigue,” Expert Systems with Applications, vol. 36, no. 2 PART 1, pp. 2352–2359, 2009.

P. Li, W. Jiang, and F. Su, “Single-channel EEG-based mental fatigue detection based on deep belief network,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2016-Octob, pp. 367–370, 2016.

F. Sauvet et al., “In-flight automatic detection of vigilance states using a single EEG channel,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 12, pp. 2840–2847, 2014.

H. JASPER, “The ten twenty electrode system of the international federation,” Electroencephalography and Clinical Neurophysiology, vol. 10, pp. 371–375, 1958.

M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, “A novel biometric approach for human identification and verification using eye blinking signal,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 876–880, 2015.

M. T. Saletu and G. Saletu-Zyhlarz, “Modafinil effects in narcolepsy,” in Neuroimaging of Sleep and Sleep Disorders, E. Nofzinger, P. Maquet, and J. M. Thorpy, Eds. Cambridge: Cambridge University Press, 2013, pp. 233–234.

W. Zhou and J. Gotman, “Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model,” Progress in Natural Science, vol. 19, no. 9, pp. 1165–1170, 2009.

A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures.,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, Jul. 1964.

F. Abd Rahman and M. F. Othman, “Real Time Eye Blink Artifacts Removal in Electroencephalogram Using Savitzky-Golay Referenced Adaptive Filtering,” in IFMBE Proceedings, 2016, vol. 56, pp. 68–71.

K. Naito, T. Isioka, H. Takano, and K. Nakamura, “Real time doze detection method using closed eye time during blink burst and isolated blinks,” Proceedings of the SICE Annual Conference, pp. 1837–1840, 2012.

M. A. Hendrawan, E. S. Pane, A. D. Wibawa, and M. H. Purnormo, “Investigating Window Segmentation on Mental Fatigue Detection Using Single-Channel EEG,” Proceedings of 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, ICICI-BME 2017, pp. 173–178, 2018.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 


Jurnal Sistem Informasi dan Bisnis Cerdas (SIBC)
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, UPN "Veteran" Jawa Timur
Jl. Rungkut Madya Gunung Anyar Surabaya 60294
Email : sibc@upnjatim.ac.id



 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.