POTENSI, KEAMANAN DAN TANTANGAN PENERAPAN BAKTERIOSIN SEBAGAI AGEN BIOPRESERVATIF PANGAN: SEBUAH TELAAH
Abstract
Kontaminasi mikroba pada produk pangan dapat diminimalisir melalui penggunaan senyawa antimikroba, baik alami dan sintetik. Namun, penggunaan senyawa antimikroba sintetik pada bahan pangan mulai digantikan oleh senyawa antimikroba alami. Salah satu jenis antimikroba alami yang aman digunakan yaitu bakteriosin. Bakteriosin merupakan senyawa antimikroba yang diproduksi oleh bakteri Gram positif dan Gram negatif. Studi mengenai bakteriosin telah banyak dilakukan, terutama yang berkaitan dengan karakteristik dan jenis-jenis bakteriosin. Selain itu, evaluasi toksisitas dan keamanan bakteriosin serta aplikasi dan tantangan penggunaan bakteriosin pada bidang pangan juga menjadi objek penelitian. Namun, perkembangan penelitian bakteriosin yang mencakup berbagai aspek tersebut belum banyak dieksplorasi. Oleh karena itu, pada artikel ini dilakukan penelaahan mengenai bakteriosin yang tercakup dalam tiga aspek utama, yaitu (1) karakteristik dan klasifikasi bakteriosin, (2) potensi dan tantangan aplikasi bakteriosin pada produk pangan, serta (3) evaluasi toksisitas dan kriteria keamanan bakteriosin.
Kata kunci : Peptida antimikroba, antibakteri, pengawet alami, bakteri asam laktat, nisin
References
Aasen, I. M., Markussen, S., Møretrø, T., Katla, T., Axelsson, L., & Naterstad, K. (2003). Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology, 87(1–2), 35–43. https://doi.org/10.1016/S0168-1605(03)00047-3
Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Ramanan, R. N., Kadkhodaei, S., Mustafa, S., & Ariff, A. B. (2018). Kinetic modeling of bacteriocin-like inhibitory substance secretion by Pediococcus acidilactici Kp10 and its stability in food manufacturing conditions. Journal of Food Science and Technology, 55(4), 1270–1284. https://doi.org/10.1007/s13197-018-3037-x
Abdullahi, N., & Dandago, M. A. (2021). Hurdle Technology: Principles and Recent Applications in Foods. Indonesian Food and Nutrition Progress, 17(1), 6. https://doi.org/10.22146/ifnp.52552
Ahmad, V., Khan, M. S., Jamal, Q. M. S., Alzohairy, M. A., Al Karaawi, M. A., & Siddiqui, M. U. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1), 1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016
Ahn, H., Kim, J., & Kim, W. J. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, 59–66. https://doi.org/10.1016/j.foodcont.2017.04.022
Al-Holy, M. A., Al-Nabulsi, A., Osaili, T. M., Ayyash, M. M., & Shaker, R. R. (2012). Inactivation of Listeria innocua in brined white cheese by a combination of nisin and heat. Food Control, 23(1), 48–53. https://doi.org/10.1016/j.foodcont.2011.06.009
Anacarso, I., de Niederhäusern, S., Iseppi, R., Sabia, C., Bondi, M., & Messi, P. (2011). Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control, 22(12), 2076–2080. https://doi.org/10.1016/j.foodcont.2011.06.001
Ananou, S., Garriga, M., Jofré, A., Aymerich, T., Gálvez, A., Maqueda, M., … Valdivia, E. (2010). Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Science, 84(4), 594–600. https://doi.org/10.1016/j.meatsci.2009.10.017
Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., … Van Der Donk, W. A. (2014). Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 30(1), 108–160. https://doi.org/10.1039/c2np20085f.Ribosomally
Balay, D. R., Dangeti, R. V., Kaur, K., & McMullen, L. M. (2017). Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms. International Journal of Food Microbiology, 255(May), 25–31. https://doi.org/10.1016/j.ijfoodmicro.2017.05.016
Balciunas, E. M., Castillo Martinez, F. A., Todorov, S. D., Franco, B. D. G. de M., Converti, A., & Oliveira, R. P. de S. (2013). Novel biotechnological applications of bacteriocins: A review. Food Control, 32(1), 134–142. https://doi.org/10.1016/j.foodcont.2012.11.025
Barbosa, A. A. T., Mantovani, H. C., & Jain, S. (2017). Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Critical Reviews in Biotechnology, 37(7), 852–864. https://doi.org/10.1080/07388551.2016.1262323
Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, M., & Fliss, I. (2019). Bioprotective Culture: A New Generation of Food Additives for the Preservation of Food Quality and Safety. Industrial Biotechnology, 15(3), 138–147. https://doi.org/10.1089/ind.2019.29175.lbs
Benabbou, R., Subirade, M., Desbiens, M., & Fliss, I. (2018). The impact of chitosan-divergicin film on growth of listeria monocytogenes in Cold-smoked salmon. Frontiers in Microbiology, 9(NOV), 1–10. https://doi.org/10.3389/fmicb.2018.02824
Benítez-Chao, D. F., León-Buitimea, A., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2021). Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Frontiers in Microbiology, 12(April), 1–18. https://doi.org/10.3389/fmicb.2021.630695
Black, E. P., Linton, M., McCall, R. D., Curran, W., Fitzgerald, G. F., Kelly, A. L., & Patterson, M. F. (2008). The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. Journal of Applied Microbiology, 105(1), 78–87. https://doi.org/10.1111/j.1365-2672.2007.03722.x
Boelter, J. F., & Brandelli, A. (2016). Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay. Colloids and Surfaces B: Biointerfaces, 145, 740–747. https://doi.org/10.1016/j.colsurfb.2016.05.080
BPOM. (2019). Peraturan Badan Pengawas Obat Dan Makanan tentang Bahan Tambahan Pangan. Badan pengawas obat dan makanan republik indonesia.
Brillet, A., Pilet, M. F., Prevost, H., Bouttefroy, A., & Leroi, F. (2004). Biodiversity of Listeria monocytogenes sensitivity to bacteriocin-producing Carnobacterium strains and application in sterile cold-smoked salmon. Journal of Applied Microbiology, 97(5), 1029–1037. https://doi.org/10.1111/j.1365-2672.2004.02383.x
Burgos, M. J. G., Pulido, R. P., Aguayo, M. del C. L., Gálvez, A., & Lucas, R. (2014). The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. International Journal of Molecular Sciences, 15(12), 22706–22727. https://doi.org/10.3390/ijms151222706
Cabo, M. L., Torres, B., Herrera, J. J. R., Bernárdez, M., & Pastoriza, L. (2009). Application of nisin and pediocin against resistance and germination of Bacillus spores in sous vide products. Journal of Food Protection, 72(3), 515–523. https://doi.org/10.4315/0362-028X-72.3.515
Carballo, J. (2021). Sausages: Nutrition, safety, processing and quality improvement. Foods, 10(4), 1–9. https://doi.org/10.3390/foods10040890
Carlin Fagundes, P., Miceli de Farias, F., Cabral da Silva Santos, O., Souza da Paz, J. A., Ceotto-Vigoder, H., Sales Alviano, D., … de Freire Bastos, M. do C. (2016). The four-component aureocin A70 as a promising agent for food biopreservation. International Journal of Food Microbiology (Vol. 237). Elsevier B.V. https://doi.org/10.1016/j.ijfoodmicro.2016.08.017
Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate Outbreaks of Foodborne Illness in the United States Associated With Fresh Produce From 2010 to 2017. Frontiers in Microbiology, 10(November), 1–15. https://doi.org/10.3389/fmicb.2019.02667
Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43(2), 194–199. https://doi.org/10.1111/j.1472-765X.2006.01933.x
Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011
Cebrián, R., Rodríguez-Cabezas, M. E., Martín-Escolano, R., Rubiño, S., Garrido-Barros, M., Montalbán-López, M., … Maqueda, M. (2019). Preclinical studies of toxicity and safety of the AS-48 bacteriocin. Journal of Advanced Research, 20, 129–139. https://doi.org/10.1016/j.jare.2019.06.003
Centers for Disease Control and Prevention (CDC). (2017). National Outbreak Reporting System (NORS). Retrieved July 11, 2021, from https://wwwn.cdc.gov/norsdashboard/
Chandrakasan, G., Rodríguez-Hernández, A. I., del Rocío López-Cuellar, M., Palma-Rodríguez, H. M., & Chavarría-Hernández, N. (2019). Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnology Letters, 41(4–5), 453–469. https://doi.org/10.1007/s10529-018-02635-5
Chen, H., & Hoover, D. (2003). Bacteriocins and their Food Applications. Comprehensive Reviews in Food Science and Food Safety, 2, 82–100.
Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. T. (2018). Functions and emerging applications of bacteriocins. Curr Opin Biotechnol, 49, 23–28. https://doi.org/10.1016/j.copbio.2017.07.011.Functions
Chung, W., & Hancock, R. E. W. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60(1), 25–32. https://doi.org/10.1016/S0168-1605(00)00330-5
Cleveland, J., Montville, T., Nes, I., & Chikindas, M. (2001). Caracterização De Fatores Interferentes Na Produção De Bacteriocinas Por Bactérias Ácido Láticas Isoladas De Leite Cru E Queijo. International Journal of Food Microbiology, 71, 1–20. Retrieved from http://dx.doi.org/10.1016/j.foodcont.2012.11.025%5Cnhttp://medcraveonline.com/JBMOA/JBMOA-02-00040.php%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S2212670812000814
Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing Innate Immunity for Food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/10.1038/nrmicro1240
Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937
da Silva Malheiros, P., Daroit, D. J., da Silveira, N. P., & Brandelli, A. (2010). Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiology, 27(1), 175–178. https://doi.org/10.1016/j.fm.2009.09.013
De Carvalho, A. A. T., Costa, E. D., Mantovani, H. C., & Vanetti, M. C. D. (2007). Effect of bovicin HC5 on growth and spore germination of Bacillus cereus and Bacillus thuringiensis isolated from spoiled mango pulp. Journal of Applied Microbiology, 102(4), 1000–1009. https://doi.org/10.1111/j.1365-2672.2006.03160.x
de Freire Bastos, M. D. C., Varella Coelho, M. L., & da Silva Santos, O. C. (2015). Resistance to bacteriocins produced by gram-positive bacteria. Microbiology (United Kingdom) (Vol. 161). https://doi.org/10.1099/mic.0.082289-0
De Vuyst, L., & Leroy, F. (2007). Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology, 13(4), 194–199. https://doi.org/10.1159/000104752
Devi, S. M., Ramaswamy, A. M., & Halami, P. M. (2014). In situ production of pediocin PA-1 like bacteriocin by different genera of lactic acid bacteria in soymilk fermentation and evaluation of sensory properties of the fermented soy curd. Journal of Food Science and Technology, 51(11), 3325–3332. https://doi.org/10.1007/s13197-012-0870-1
Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The Continuing Story of Class IIa Bacteriocins. Microbiology and Molecular Biology Reviews, 70(2), 564–582. https://doi.org/10.1128/mmbr.00016-05
Duchateau, A. L. L., & van Scheppingen, W. B. (2018). Stability study of a nisin/natamycin blend by LC-MS. Food Chemistry, 266(May), 240–244. https://doi.org/10.1016/j.foodchem.2018.05.121
EFSA. (2017). Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA Journal, 15(12). https://doi.org/10.2903/j.efsa.2017.5063
Ekblad, B., Nissen-Meyer, J., & Kristensen, T. (2017). Whole-genome sequencing of mutants with increased resistance against the two-peptide bacteriocin plantaricin JK reveals a putative receptor and potential docking site. PLoS ONE, 12(9), 1–11. https://doi.org/10.1371/journal.pone.0185279
Férir, G., Petrova, M. I., Andrei, G., Huskens, D., Hoorelbeke, B., Snoeck, R., … Schols, D. (2013). The Lantibiotic Peptide Labyrinthopeptin A1 Demonstrates Broad Anti-HIV and Anti-HSV Activity with Potential for Microbicidal Applications. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0064010
Flynn, S., van Sinderen, D., Thornton, G. M., Holo, H., Nes, I. F., & Collins, J. K. (2002). Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology, 148(4), 973–984. https://doi.org/10.1099/00221287-148-4-973
Fu, Y., Mu, D., Qiao, W., Zhu, D., Wang, X., Liu, F., … Qiao, M. (2018). Co-expression of nisin Z and leucocin C as a basis for effective protection against Listeria monocytogenes in pasteurized milk. Frontiers in Microbiology, 9(MAR), 1–11. https://doi.org/10.3389/fmicb.2018.00547
Gálvez, A., Abriouel, H., López, R. L., & Omar, N. Ben. (2007). Bacteriocin-based strategies for food biopreservation, 120, 51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
Gao, Y., Li, D., & Liu, X. (2013). Evaluation of the factors affecting the activity of sakacin C2 against E. coli in milk. Food Control, 30(2), 453–458. https://doi.org/10.1016/j.foodcont.2012.07.013
García, M. T., Martínez Cañamero, M., Lucas, R., Omar, N. Ben, Pérez Pulido, R., & Gálvez, A. (2004). Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 90(2), 161–170. https://doi.org/10.1016/S0168-1605(03)00051-5
Garriga, M., Aymerich, M. T., Costa, S., Monfort, J. M., & Hugas, M. (2002). Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19(5), 509–518. https://doi.org/10.1006/fmic.2002.0498
Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2016). Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 56(8), 1262–1274. https://doi.org/10.1080/10408398.2013.763765
Gradisteanu Pircalabioru, G., Popa, L. I., Marutescu, L., Gheorghe, I., Popa, M., Czobor Barbu, I., … Chifiriuc, M. C. (2021). Bacteriocins in the era of antibiotic resistance: rising to the challenge. Pharmaceutics, 13(2), 1–15. https://doi.org/10.3390/pharmaceutics13020196
Grande, M. J., López, R. L., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., … Gálvez, A. (2007). Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Journal of Food Protection, 70(2), 405–411. https://doi.org/10.4315/0362-028X-70.2.405
Grande, M. J., Lucas, R., Abriouel, H., Valdivia, E., Omar, N. Ben, Maqueda, M., … Gálvez, A. (2006). Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food Microbiology, 106(2), 185–194. https://doi.org/10.1016/j.ijfoodmicro.2005.08.003
Halliwell, S., Warn, P., Sattar, A., Derrick, J. P., & Upton, M. (2017). A single dose of epidermicin NI01 is sufficient to eradicate MRSA from the nares of cotton rats. Journal of Antimicrobial Chemotherapy, 72(3), 778–781. https://doi.org/10.1093/jac/dkw457
Hanchi, H., Hammami, R., Gingras, H., Kourda, R., Bergeron, M. G., Ben Hamida, J., … Fliss, I. (2017). Inhibition of MRSA and of Clostridium difficile by durancin 61A: Synergy with bacteriocins and antibiotics. Future Microbiology, 12(3), 205–212. https://doi.org/10.2217/fmb-2016-0113
Hanny, E. L. L., Mustopa, A. Z., Budiarti, S., Darusman, H. S., Ningrum, R. A., & Fatimah. (2019). Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1.1 (EPEC K1.1). Molecular Biology Reports, 46(6), 6501–6512. https://doi.org/10.1007/s11033-019-05096-9
Hassan, H., Gomaa, A., Subirade, M., Kheadr, E., St-Gelais, D., & Fliss, I. (2020). Novel design for alginate/resistant starch microcapsules controlling nisin release. International Journal of Biological Macromolecules, 153, 1186–1192. https://doi.org/10.1016/j.ijbiomac.2019.10.248
Hata, T., Tanaka, R., & Ohmomo, S. (2010). Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. International Journal of Food Microbiology, 137(1), 94–99. https://doi.org/10.1016/j.ijfoodmicro.2009.10.021
Huang, Y., Huang, J., & Chen, Y. (2010). Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein and Cell, 1(2), 143–152. https://doi.org/10.1007/s13238-010-0004-3
Huq, T., Riedl, B., Bouchard, J., Salmieri, S., & Lacroix, M. (2014). Microencapsulation of nisin in alginate-cellulose nanocrystal (CNC) microbeads for prolonged efficacy against Listeria monocytogenes. Cellulose, 21(6), 4309–4321. https://doi.org/10.1007/s10570-014-0432-y
Ibarguren, C., Céliz, G., Díaz, A. S., Bertuzzi, M. A., Daz, M., & Audisio, M. C. (2015). Gelatine based films added with bacteriocins and a flavonoid ester active against food-borne pathogens. Innovative Food Science and Emerging Technologies, 28, 66–72. https://doi.org/10.1016/j.ifset.2015.01.007
Johnson, E. M., Jung, D. Y. G., Jin, D. Y. Y., Jayabalan, D. R., Yang, D. S. H., & Suh, J. W. (2018). Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition, 58(16), 2743–2767. https://doi.org/10.1080/10408398.2017.1340870
Kalschne, D. L., Geitenes, S., Veit, M. R., Sarmento, C. M. P., & Colla, E. (2014). Growth inhibition of lactic acid bacteria in ham by nisin: A model approach. Meat Science, 98(4), 744–752. https://doi.org/10.1016/j.meatsci.2014.07.002
Karpiński, T. M., & Szkaradkiewicz, A. K. (2013). Characteristic of bacteriocines and their application. Polish Journal of Microbiology, 62(3), 223–235. https://doi.org/10.33073/pjm-2013-030
Khajehali, E., Shekarforoush, S. S., Nazer, a H. K., & Hoseinzadeh, S. (2011). Combined effects of nisin and modified atmosphere packaging on chemical , microbial and sensory properties of emulsion-type sausage, (August), 1–4.
Kitagawa, N., Otani, T., & Inai, T. (2019). Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anatomical Science International, 94(2), 163–171. https://doi.org/10.1007/s12565-018-0462-x
Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1–3), 39–85. https://doi.org/10.1016/0168-6445(93)90057-G
Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128(October 2018), 171–177. https://doi.org/10.1016/j.micpath.2019.01.002
Kurnianto, M. A., Kusumaningrum, H. D., & Lioe, H. N. (2021). Partial Purification and Characterization of Bacteriocin-Like Inhibitory Substances Produced by Streptomyces sp . Isolated from the Gut of Chanos chanos, 2021.
Le Lay, C., Dridi, L., Bergeron, M. G., Ouellette, M., & Fliss, I. (2016). Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. Journal of Medical Microbiology, 65(2), 169–175. https://doi.org/10.1099/jmm.0.000202
Lei, J., Sun, L. C., Huang, S., Zhu, C., Li, P., He, J., … He, Q. Y. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919–3931.
Lim, K. B., Balolong, M. P., Kim, S. H., Oh, J. K., Lee, J. Y., & Kang, D. K. (2016). Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Research International, 2016, 1–7. https://doi.org/10.1155/2016/8521476
López-Cuellar, M. del R., Rodríguez-Hernández, A. I., & Chavarría-Hernández, N. (2016). LAB bacteriocin applications in the last decade. Biotechnology and Biotechnological Equipment, 30(6), 1039–1050. https://doi.org/10.1080/13102818.2016.1232605
Lucas, R., Grande, M. J., Abriouel, H., Maqueda, M., Ben Omar, N., Valdivia, E., … Gálvez, A. (2006). Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food and Chemical Toxicology, 44(10), 1774–1781. https://doi.org/10.1016/j.fct.2006.05.019
Martín-Escolano, R., Cebrián, R., Maqueda, M., Romero, D., Rosales, M. J., Sánchez-Moreno, M., & Marín, C. (2020). Assessing the effectiveness of AS-48 in experimental mice models of Chagas’ disease. Journal of Antimicrobial Chemotherapy, 75(6), 1537–1545. https://doi.org/10.1093/JAC/DKAA030
Martínez Viedma, P., Abriouel, H., Sobrino López, A., Ben Omar, N., Lucas López, R., Valdivia, E., … Gálvez, A. (2009). Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiology, 26(5), 491–496. https://doi.org/10.1016/j.fm.2009.03.001
Martins, J. T., Cerqueira, M. A., Souza, B. W. S., Carmo Avides, M. D. O., & Vicente, A. A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58(3), 1884–1891. https://doi.org/10.1021/jf902774z
Massani, M. B., Vignolo, G. M., Eisenberg, P., & Morando, P. J. (2013). Adsorption of the bacteriocins produced by Lactobacillus curvatus CRL705 on a multilayer-LLDPE film for food-packaging applications. LWT - Food Science and Technology, 53(1), 128–138. https://doi.org/10.1016/j.lwt.2013.01.018
Mathur, H., Fallico, V., O’Connor, P. M., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2017). Insights into the mode of action of the sactibiotic thuricin CD. Frontiers in Microbiology, 8(APR), 1–14. https://doi.org/10.3389/fmicb.2017.00696
McCaughey, L. C., Ritchie, N. D., Douce, G. R., Evans, T. J., & Walker, D. (2016). Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Scientific Reports, 6(July), 1–8. https://doi.org/10.1038/srep30201
Md Sidek, N. L., Halim, M., Tan, J. S., Abbasiliasi, S., Mustafa, S., & Ariff, A. B. (2018). Stability of bacteriocin-like inhibitory substance (BLIS) produced by pediococcus acidilactici kp10 at different extreme conditions. BioMed Research International, 2018. https://doi.org/10.1155/2018/5973484
Meldrum, R. J., Little, C. L., Sagoo, S., Mithani, V., McLauchlin, J., & de Pinna, E. (2009). Assessment of the microbiological safety of salad vegetables and sauces from kebab take-away restaurants in the United Kingdom. Food Microbiology, 26(6), 573–577. https://doi.org/10.1016/j.fm.2009.03.013
Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology, 2, 299–329. https://doi.org/10.1146/annurev-food-022510-133721
Mohamed, S. B., Adlan, T. A., Khalafalla, N. A., Abdalla, N. I., Ali, Z. S. A., Munir KA, A., … Elnour, M. A. B. (2019). Proteomics and Docking Study Targeting Penicillin-Binding Protein and Penicillin-Binding Protein2a of Methicillin-Resistant Staphylococcus aureus Strain SO-1977 Isolated from Sudan. Evolutionary Bioinformatics, 15. https://doi.org/10.1177/1176934319864945
Molinos, A. C., Abriouel, H., Omar, N. Ben, Lucas, R., Valdivia, E., & Gálvez, A. (2008). Inactivation of Listeria monocytogenes in raw fruits by enterocin AS-48. Journal of Food Protection, 71(12), 2460–2467. https://doi.org/10.4315/0362-028X-71.12.2460
Montero, P., Gómez-Estaca, J., & Gómez-Guillén, M. C. (2007). Influence of salt, smoke, and high pressure on growth of Listeria monocytogenes spoilage microflora in cold-smoked dolphinfish (Coryphaena hippurus). Journal of Food Protection, 70(2), 399–404. https://doi.org/10.4315/0362-028X-70.2.399
Moračanin, S. V., Turubatović, L., Škrinjar, M., & Obradović, D. (2013). Antilisterial activity of bacteriocin isolated from leuconostoc mesenteroides ssp. mesenteroides IMAU:10231 in the production of sremska sausages: Lactic acid bacteria isolation, bacteriocin identification and meat application experiments. Food Technology and Biotechnology, 51(2), 247–256.
Morgan, S. M., Ross, R. P., Beresford, T., & Hill, C. (2000). Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. Journal of Applied Microbiology, 88(3), 414–420. https://doi.org/10.1046/j.1365-2672.2000.00975.x
Morton, J. T., Freed, S. D., Lee, S. W., & Friedberg, I. (2015). A large scale prediction of bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins. BMC Bioinformatics, 16(1), 1–9. https://doi.org/10.1186/s12859-015-0792-9
Mota-Meira, M., Morency, H., & Lavoie, M. C. (2005). In vivo activity of mutacin B-Ny266. Journal of Antimicrobial Chemotherapy, 56(5), 869–871. https://doi.org/10.1093/jac/dki295
Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379–1388. https://doi.org/10.1007/s12010-013-0267-2
Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H. M., Jha, S. N., Bhadwal, S., … Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, 212–218. https://doi.org/10.1016/j.postharvbio.2014.10.003
Ng, Z. J., Zarin, M. A., Lee, C. K., & Tan, J. S. (2020). Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: A review. RSC Advances, 10(64), 38937–38964. https://doi.org/10.1039/d0ra06161a
O’ Connor, P. M., O’ Shea, E. F., Cotter, P. D., Hill, C., & Ross, R. P. (2018). The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific Reports, 8(1), 6–13. https://doi.org/10.1038/s41598-018-30271-6
Pandey, S., & Singh, V. (2013). Food Fortification to Combat Iron Deficiency Anaemia. International Journal of Advanced Nutritional and Health Science, 1(1), 39–47. https://doi.org/10.23953/cloud.ijanhs.159
Pathanibul, P., Taylor, T. M., Davidson, P. M., & Harte, F. (2009). Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. International Journal of Food Microbiology, 129(3), 316–320. https://doi.org/10.1016/j.ijfoodmicro.2008.12.020
Pei, J., Yuan, Y., & Yue, T. (2013). Characterization of bacteriocin bificin C6165: A novel bacteriocin. Journal of Applied Microbiology, 114(5), 1273–1284. https://doi.org/10.1111/jam.12145
Pei, Jinjin, Jin, W., Abd El-Aty, A. M., Baranenko, D. A., Gou, X., Zhang, H., … Yue, T. (2020). Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control, 110(October 2019), 1–8. https://doi.org/10.1016/j.foodcont.2019.106923
Pérez Pulido, R., Toledo del árbol, J., Grande Burgos, M. J., & Gálvez, A. (2012). Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control, 28(1), 19–24. https://doi.org/10.1016/j.foodcont.2012.04.045
Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(Suppl 1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3
Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies, 36, 287–293. https://doi.org/10.1016/j.ifset.2016.07.017
Prakash, A., Baskaran, R., Paramasivam, N., & Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523. https://doi.org/10.1016/j.foodres.2018.05.066
Prakashwadekar, B., & Dharmadhikari, S. M. (2015). Original Research Article Screening of Marine Actinomycetes as Probiotics for Production of Bacteriocin, 4(11), 414–421.
Prudêncio, C. V., dos Santos, M. T., & Vanetti, M. C. D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of Food Science and Technology, 52(9), 5408–5417. https://doi.org/10.1007/s13197-014-1666-2
Ramos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables - An overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 20, 1–15. https://doi.org/10.1016/j.ifset.2013.07.002
Riley, M. A., & Wertz, J. E. (2002). Bacteriocin diversity: Ecological and evolutionary perspectives. Biochimie, 84(5–6), 357–364. https://doi.org/10.1016/S0300-9084(02)01421-9
Rivas, F. P., Castro, M. P., Vallejo, M., Marguet, E., & Campos, C. A. (2014). Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface. Meat Science, 97(4), 475–479. https://doi.org/10.1016/j.meatsci.2014.03.003
Sahoo, T. K., Jena, P. K., Prajapati, B., Gehlot, L., Patel, A. K., & Seshadri, S. (2017). In Vivo Assessment of Immunogenicity and Toxicity of the Bacteriocin TSU4 in BALB/c Mice. Probiotics and Antimicrobial Proteins, 9(3), 345–354. https://doi.org/10.1007/s12602-016-9249-3
Saldaña, G., Minor-Pérez, H., Raso, J., & Álvarez, I. (2011). Combined effect of temperature, PH, and presence of nisin on inactivation of staphylococcus aureus and listeria monocytogenes by pulsed electric fields. Foodborne Pathogens and Disease, 8(7), 797–802. https://doi.org/10.1089/fpd.2010.0788
Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74–84. https://doi.org/10.1016/j.foodhyd.2013.02.008
Sant’Ana, A. S., Landgraf, M., Destro, M. T., & Franco, B. D. G. M. (2011). Prevalence and counts of Salmonella spp. in minimally processed vegetables in São Paulo, Brazil. Food Microbiology, 28(6), 1235–1237. https://doi.org/10.1016/j.fm.2011.04.002
Schillinger, U., Geisen, R., & Holzapfel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science and Technology, 7(5), 158–164. https://doi.org/10.1016/0924-2244(96)81256-8
Schöbitz, R., Zaror, T., León, O., & Costa, M. (1999). A bacteriocin from Carnobacterium piscicola for the control of Listeria monocytogenes in vacuum-packaged meat. Food Microbiology, 16(3), 249–255. https://doi.org/10.1006/fmic.1998.0241
Settanni, L., & Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121(2), 123–138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
Shin, J., Gwak, J., Kamarajan, P., Fenno, C., Rickard, A., & Kapila, Y. (2016). Biomedical Applications of Nisin. J Appl Microbiol, 120(6), 1449–1465. https://doi.org/10.1007/978-1-4757-2851-4_7
Sidhu, P. K., & Nehra, K. (2019). Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science, 31(4), 758–767. https://doi.org/10.1016/j.jksus.2017.12.007
Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/fmicb.2018.00594
Simons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(639), 1–31. https://doi.org/10.3390/microorganisms8050639
Siroli, L., Patrignani, F., Serrazanetti, D. I., Gardini, F., & Lanciotti, R. (2015). Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science and Technology, 46(2), 302–310. https://doi.org/10.1016/j.tifs.2015.04.014
Sobrino-Lopez, A., Viedma-Martínez, P., Abriouel, H., Valdivia, E., Gálvez, A., & Martin-Belloso, O. (2009). The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. Journal of Dairy Science, 92(6), 2514–2523. https://doi.org/10.3168/jds.2008-1996
Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. Ben, Gaudreau, H., … Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), 1–24. https://doi.org/10.1093/femsre/fuaa039
Somkuti, G. A., & Steinberg, D. H. (2003). Pediocin production by recombinant lactic acid bacteria. Biotechnology Letters, 25(6), 473–477. https://doi.org/10.1023/A:1022652028835
Su, P., Wang, D. X., Ding, S. X., & Zhao, J. (2014). Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge mycale sp. from the coast of Fujian, China. Canadian Journal of Microbiology, 60(4), 217–225. https://doi.org/10.1139/cjm-2013-0785
Sun, M., Shen, X., & Ma, Y. (2019). Biomedicine & Pharmacotherapy Rehmannioside A attenuates cognitive de fi cits in rats with vascular dementia ( VD ) through suppressing oxidative stress , in fl ammation and apoptosis. Biomedicine & Pharmacotherapy, 120(January 2018), 109492. https://doi.org/10.1016/j.biopha.2019.109492
Surati, S. (2021). Bacteriocin, Antimicrobial as A New Natural Food Preservative: Its Potential and Challenges. Eruditio : Indonesia Journal of Food and Drug Safety, 1(1), 63–82. https://doi.org/10.54384/eruditio.v1i1.34
Timothy, B., Iliyasu, A. H., & Anvikar, A. R. (2021). Bacteriocins of Lactic Acid Bacteria and Their Industrial Application. Current Topic in Lactic Acid Bacteria and Probiotics, 7(1), 1–13. https://doi.org/10.35732/ctlabp.2021.7.1.1
Todorov, S. D., Rachman, C., Fourrier, A., Dicks, L. M. T., van Reenen, C. A., Prévost, H., & Dousset, X. (2011). Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe, 17(1), 23–31. https://doi.org/10.1016/j.anaerobe.2010.01.004
Turgis, M., Stotz, V., Dupont, C., Salmieri, S., Khan, R. A., & Lacroix, M. (2012). Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins. Radiation Physics and Chemistry, 81(8), 1185–1188. https://doi.org/10.1016/j.radphyschem.2012.02.021
Uzelac, G., Miljkovic, M., Lozo, J., Radulovic, Z., Tosic, N., & Kojic, M. (2015). Expression of bacteriocin LsbB is dependent on a transcription terminator. Microbiological Research, 179, 45–53. https://doi.org/10.1016/j.micres.2015.06.011
Van Staden, A. D. P., Heunis, T., Smith, C., Deane, S., & Dicks, L. M. T. (2016). Efficacy of lantibiotic treatment of Staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrobial Agents and Chemotherapy, 60(7), 3948–3955. https://doi.org/10.1128/AAC.02938-15
Vijay Simha, B., Sood, S. K., Kumariya, R., & Garsa, A. K. (2012). Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiological Research, 167(9), 544–549. https://doi.org/10.1016/j.micres.2012.01.001
Walsh, C. J., Guinane, C. M., Hill, C., Ross, R. P., O’Toole, P. W., & Cotter, P. D. (2015). In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiology, 15(1), 1–11. https://doi.org/10.1186/s12866-015-0515-4
Wayah, S. B., & Philip, K. (2018). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial Cell Factories, 17(1), 1–18. https://doi.org/10.1186/s12934-018-0972-1
Yamazaki, K., Yamamoto, T., Kawai, Y., & Inoue, N. (2004). Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiology, 21(3), 283–289. https://doi.org/10.1016/j.fm.2003.08.009
Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2(1), 1–12. https://doi.org/10.1186/2191-0855-2-48
Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5(MAY), 1–10. https://doi.org/10.3389/fmicb.2014.00241
Yildirim, Z., Yerlikaya, S., Öncül, N., & Sakin, T. (2016). Inhibitory effect of lactococcin BZ against listeria innocua and indigenous microbiota of fresh beef. Food Technology and Biotechnology, 54(3), 317–323. https://doi.org/10.17113/ftb.54.03.16.4373
Younas, S., Ali, S., Zahid, S., & Dastgeer, S. (2017). Isolation, Purification and Commercial Operation of LAB Bacteriocins, 4(2), 298–305.
Yu, Y., Wu, J., Xiao, G., Xu, Y., Tang, D., Chen, Y., & Zhang, Y. (2013). Combined effect of dimethyl dicarbonate (DMDC) and nisin on indigenous microorganisms of litchi juice and its microbial shelf life. Journal of Food Science, 78(8), 1236–1241. https://doi.org/10.1111/1750-3841.12215
Yuste, J., & Fung, D. Y. C. (2004). Inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 in Apple Juice by a Combination of Nisin and Cinnamon. Journal of Food Protection, 67(2), 371–377. https://doi.org/10.4315/0362-028X-67.2.371
Zgheib, H., Drider, D., & Belguesmia, Y. (2020). Broadening and enhancing bacteriocins activities by association with bioactive substances. International Journal of Environmental Research and Public Health, 17(21), 1–12. https://doi.org/10.3390/ijerph17217835
Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., … Ai, L. (2018). Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by lactobacillus plantarumJ23, isolated from Chinese traditional fermented milk. Frontiers in Microbiology, 9(OCT), 1–7. https://doi.org/10.3389/fmicb.2018.02165
Zhou, X. X., Li, W. F., Ma, G. X., & Pan, Y. J. (2006). The nisin-controlled gene expression system: Construction, application and improvements. Biotechnology Advances, 24(3), 285–295. https://doi.org/10.1016/j.biotechadv.2005.11.001
Zouhir, A., Hammami, R., Fliss, I., & Hamida, J. Ben. (2010). A new structure-based classification of gram-positive bacteriocins. Protein Journal, 29(6), 432–439. https://doi.org/10.1007/s10930-010-9270-4
Full Text: PDF
Refbacks
- There are currently no refbacks.