FONDASI APLIKASI STRATEGIS MASA DEPAN PICKERING NANOEMULSION (PNE) : TINJAUAN KOMPREHENSIF

Adham Prayudi, Dwi Lestari Rahayu, Rozi Satria Utama, Sarah E. A. Soliman, Hanny Srimulyani Dulimarta, Hana Ankrissa Hondo

Abstract


Peningkatan kesadaran kesehatan memicu pertumbuhan pasar nutrasetikal global. Tantangan utamanya adalah rendahnya kelarutan dan kerentanan degradasi oleh panas, pH, oksidasi pada senyawa bioaktif lipofilik sehingga membatasi bioavailabilitasnya. Pickering Nanoemulsi (PNE) muncul sebagai platform penghantaran superior yang memanfaatkan partikel padat alami (food grade) seperti protein dan polisakarida sebagai stabilisator ireversibel, selaras dengan permintaan pasar clean label. Tinjauan literatur naratif deskriptif ini mensintesis 24 artikel penelitian eksperimental terkini tahun 2021–2025 untuk menganalisis perkembangan mutakhir PNE berbasis biopolimer pangan. Kestabilan PNE diperoleh melalui adsorpsi partikel amfifilik pada antarmuka, dengan membentuk penghalang sterik yang kaku.  Partikel stabilisator direkayasa melalui pengendalian pH, modifikasi kimia (konjugat), atau rekayasa nanopolimer, dan diproduksi dengan teknik berenergi tinggi (ultrasonikasi, homogenisasi tekanan tinggi). PNE menunjukkan ketahanan yang luar biasa terhadap sterilisasi termal (121°C), fluktuasi pH pada titik isoelektrik, dan salinitas tinggi (hingga 500 mM NaCl). Fungsionalitasnya mencakup efisiensi enkapsulasi (>80% untuk kurkumin) dan pelepasan terkontrol. PNE berbasis biopolimer pangan ini menjadi fondasi teknologi strategis untuk peningkatan stabilitas dan bioavailabilitas dalam sektor pangan fungsional, biomedis, dan material fungsional.


References


Ahmed, M., & Lu, Y. (2025). Synthesis of Chitosan Nanoparticles via Microfluidic Approach: The Role of Temperature in Tailoring Aggregation for Enhanced Uniformity. Micromachines, 16(6), 642. https://doi.org/10.3390/mi16060642

Ahmed, R., Wang, M., Qi, Z., Hira, N. ul ain, Jiang, J., Zhang, H., Iqbal, S., Wang, J., Stuart, M. A. C., & Guo, X. (2021). Pickering Emulsions Based on the pH-Responsive Assembly of Food-Grade Chitosan. ACS Omega, 6(28), 17915–17922. https://doi.org/10.1021/acsomega.1c01490

Ajayi, S. M., Olusanya, S. O., Abimbade, S. F., Faboya, O. L., Olumayede, E. G., Akintayo, C. O., & Malomo, D. (2025). Pickering emulsions: Physicochemical properties and recent applications in engineering. Hybrid Advances, 11, 100509. https://doi.org/10.1016/j.hybadv.2025.100509

Ardila, A. H., Carvajal, M. X. Q., & Moreno, F. L. (2024). Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon, 10(11), e32150. https://doi.org/10.1016/j.heliyon.2024.e32150

Aryanti, N., Adina, A. R., Nafiunisa, A., & Wardhani, D. H. (2025). Engineering novel stabilizers for Pickering nanoemulsions: The role of ultrasonic modification in pea protein-chitosan complexes. Case Studies in Chemical and Environmental Engineering, 11, 101228. https://doi.org/10.1016/j.cscee.2025.101228

Aziz, T., Rohullah, Ullah, A., Zeb, U., Hussain, M., Ali, A., Haq, F., & Kiran, M. (2025). Advancements in cellulose nanocrystals: A review of functionalization, applications, and challenges. International Journal of Biological Macromolecules, 315, 144552. https://doi.org/10.1016/j.ijbiomac.2025.144552

Bashir, S. M., Ahmed Rather, G., Patrício, A., Haq, Z., Sheikh, A. A., Shah, M. Z. ul H., Singh, H., Khan, A. A., Imtiyaz, S., Ahmad, S. B., Nabi, S., Rakhshan, R., Hassan, S., & Fonte, P. (2022). Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. Materials, 15(19), 6521. https://doi.org/10.3390/ma15196521

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials, 10(7), 1403. https://doi.org/10.3390/nano10071403

Bhadran, A., Polara, H., Babanyinah, G. K., Baburaj, S., & Stefan, M. C. (2025). Advances in Doxorubicin Chemotherapy: Emerging Polymeric Nanocarriers for Drug Loading and Delivery. Cancers, 17(14), 2303. https://doi.org/10.3390/cancers17142303

Bhutto, R. A., Bhutto, N. ul ain H., Wang, M., Iqbal, S., & Yi, J. (2024). Curcumin-loaded Pickering emulsion stabilized by pH-induced self-aggregated chitosan particles: Effects of degree of deacetylation and molecular weight. Food Hydrocolloids, 147, 109422. https://doi.org/10.1016/j.foodhyd.2023.109422

Bidooki, S. H., Spitzer, L., Petitpas, A., Sánchez-Marco, J., Martínez-Beamonte, R., Lasheras, R., Pellerin, V., Rodríguez-Yoldi, M. J., Navarro, M. A., Osada, J., & Fernandes, S. C. M. (2024). Chitosan Nanoparticles, a Novel Drug Delivery System to Transfer Squalene for Hepatocyte Stress Protection. ACS Omega, 9(52), 51379–51393. https://doi.org/10.1021/acsomega.4c08258

Borba, C. M., Tavares, M. N., Macedo, L. P., Araújo, G. S., Furlong, E. B., Dora, C. L., & Burkert, J. F. M. (2019). Physical and chemical stability of β-carotene nanoemulsions during storage and thermal process. Food Research International, 121, 229–237. https://doi.org/10.1016/j.foodres.2019.03.045

Cassani, L., & Gomez-Zavaglia, A. (2024). Pickering emulsions in food and nutraceutical technology: from delivering hydrophobic compounds to cutting-edge food applications. Exploration of Foods and Foodomics, 2(5), 408–442. https://doi.org/10.37349/eff.2024.00044

Chhabra, N., Shiriskar, J., & Srinivasan, G. (2025). Current and Future Market of the Dietary Supplements and Nutraceuticals in the Global Economy. In Dietary Supplements and Nutraceuticals (pp. 965–1012). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-8622-3_29

Chutia, H., & Mahanta, C. L. (2021). Properties of starch nanoparticle obtained by ultrasonication and high pressure homogenization for developing carotenoids-enriched powder and Pickering nanoemulsion. Innovative Food Science & Emerging Technologies, 74, 102822. https://doi.org/10.1016/j.ifset.2021.102822

Deng, W., Li, Y., Wu, L., & Chen, S. (2022). Pickering emulsions stabilized by polysaccharides particles and their applications: a review. Food Science and Technology, 42. https://doi.org/10.1590/fst.24722

Dikici, B. A., & Claeyssens, F. (2020). Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00875

Du, C., Zhu, G., Hu, H., Duan, Z., Luo, S., Lin, L., Lu, J., & Zheng, Z. (2024). Influence of droplet size and surface hydrophobicity of soybean protein-based nanoemulsion fillers on the quality of silver carp myofibrillar protein gels. Food Chemistry: X, 24, 101866. https://doi.org/10.1016/j.fochx.2024.101866

Fang, Z., Yang, Y., Lin, S., Xu, L., Chen, S., Lv, W., Wang, N., Dong, S., Lin, C., Xie, Y., Liu, J., Meng, M., Wen, W., & Yang, Y. (2025). Development and antimicrobial activity of composite edible films of chitosan and nisin incorporated with perilla essential oil-glycerol monolaurate emulsions. Food Chemistry, 462, 141006. https://doi.org/10.1016/j.foodchem.2024.141006

Fernandes, N. A. T., Simões, L. A., & Dias, D. R. (2023). Comparison of Biodegradability, and Toxicity Effect of Biosurfactants with Synthetic Surfactants. In Advancements in Biosurfactants Research (pp. 117–136). Springer International Publishing. https://doi.org/10.1007/978-3-031-21682-4_6

Foo, M. L., Ooi, C. W., Tan, K. W., & Chew, I. M. L. (2022). Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch. Chemosphere, 287, 132108. https://doi.org/10.1016/j.chemosphere.2021.132108

Gamboa, R. E. D. B., Oca, G. de M., Baudrit, J. R. V., Ríos Duarte, L. C., Lopretti, M., Rentería Urquiza, M., Zúñiga-Umaña, J. M., Barreiro, F., & Vázquez, P. (2024). Synthesis of chitosan nanoparticles (CSNP): effect of CH-CH-TPP ratio on size and stability of NPs. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1469271

Gauthier, G., & Capron, I. (2021). Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open, 4, 100036. https://doi.org/10.1016/j.jciso.2021.100036

Geng, S., Yuan, Y., Jiang, X., Zhang, R., Ma, H., Liang, G., & Liu, B. (2023). An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties. Current Research in Food Science, 6, 100458. https://doi.org/10.1016/j.crfs.2023.100458

Gündoğdu, G., Yılmaz Topuzlu, E., Mutlu, F., Ertekin, U. E., & Okur, H. I. (2024). Oil-in-Water Emulsions Probed Using Fluorescence Multivariate-Curve-Resolution Spectroscopy. Langmuir, 40(25), 13116–13121. https://doi.org/10.1021/acs.langmuir.4c01018

Guo, Q., Su, J., Xie, W., Tu, X., Yuan, F., Mao, L., & Gao, Y. (2020). Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 98, 105284. https://doi.org/10.1016/j.foodhyd.2019.105284

GVA. (2025). Market analysis report : nutraceutical market summary (2025-2030). https://www.grandviewresearch.com/industry-analysis/nutraceuticals-market

Herdiana, Y., Febrina, E., Nurhasanah, S., Gozali, D., Elamin, K. M., & Wathoni, N. (2024). Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics, 16(8), 1043. https://doi.org/10.3390/pharmaceutics16081043

Hossain, K. M. Z., Deeming, L., & Edler, K. J. (2021). Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Advances, 11(62), 39027–39044. https://doi.org/10.1039/D1RA08086E

Hosseiniyeh, N., Mohtarami, F., Almasi, H., & Azizi, S. (2024). Soy protein isolate film activated by black seed oil nanoemulsion as a novel packaging for shelf‐life extension of bulk bread. Food Science & Nutrition, 12(3), 1706–1723. https://doi.org/10.1002/fsn3.3864

Hunter, S. J., & Armes, S. P. (2022). Long-Term Stability of Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles: Effect of Nanoparticle Core Crosslinking, Oil Type, and the Role Played by Excess Copolymers. Langmuir, 38(26), 8021–8029. https://doi.org/10.1021/acs.langmuir.2c00821

Hunter, S. J., Chohan, P., Varlas, S., & Armes, S. P. (2024). Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles. Langmuir. https://doi.org/10.1021/acs.langmuir.3c03423

Jiang, L., Zhang, Z., Qiu, C., & Wen, J. (2024). A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods, 13(15), 2453. https://doi.org/10.3390/foods13152453

Kezwoń, A., Góral, I., Frączyk, T., & Wojciechowski, K. (2016). Effect of surfactants on surface activity and rheological properties of type I collagen at air/water interface. Colloids and Surfaces B: Biointerfaces, 148, 238–248. https://doi.org/10.1016/j.colsurfb.2016.08.058

Khalid, N., Shu, G., Holland, B. J., Kobayashi, I., Nakajima, M., & Barrow, C. J. (2017). Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Food Research International, 102, 364–371. https://doi.org/10.1016/j.foodres.2017.06.019

Khan, S., Abdo, A., Shu, Y., Zhang, Z., & Liang, T. (2023). The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities—A Review. Foods, 12(22), 4169. https://doi.org/10.3390/foods12224169

Kharat, M., Zhang, G., & McClements, D. J. (2018). Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Research International, 111, 178–186. https://doi.org/10.1016/j.foodres.2018.05.021

Kilinc, I. (2025). Pickering emulsion technology: An overview of stability and functionality in food processing. Food Nutrition Chemistry, 3(2), 354. https://doi.org/10.18686/fnc354

Kim, Y. J., Kim, B.-K., & Lee, M. H. (2023). Effect of small molecular surfactants on physical, turbidimetric, and rheological properties of Pickering nanoemulsions stabilized with whey protein isolate. Food Bioscience, 51, 102214. https://doi.org/10.1016/j.fbio.2022.102214

Kim, Y. J., Yong, H. I., Chun, Y. G., Kim, B.-K., & Lee, M. H. (2024). Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chemistry, 436, 137639. https://doi.org/10.1016/j.foodchem.2023.137639

Lee, M. H., Kim, H. Do, & Jang, Y. J. (2024). Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chemistry, 437, 137910. https://doi.org/10.1016/j.foodchem.2023.137910

Li, Q., Wu, Y., Fang, R., Lei, C., Li, Y., Li, B., Pei, Y., Luo, X., & ShilinLiu. (2021). Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science & Technology, 110, 573–583. https://doi.org/10.1016/j.tifs.2021.02.027

Li, W., Jiao, B., Li, S., Faisal, S., Shi, A., Fu, W., Chen, Y., & Wang, Q. (2022). Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.864943

Lin, J., Fan, S., Ruan, Y., Wu, D., Yang, T., Hu, Y., Li, W., & Zou, L. (2023). Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods, 12(6), 1126. https://doi.org/10.3390/foods12061126

Lopes, A. I., Melo, A., Afonso, T. B., Silva, S., Barros, L., Tavaria, F. K., & Pintado, M. (2025). Alginate Edible Films Containing Essential Oils: Characterization and Bioactive Potential. Polymers, 17(9), 1188. https://doi.org/10.3390/polym17091188

Lu, J., Yin, X., Wu, Q., Wang, M., Han, L., & Su, S. (2025). Fabrication and stability of Pickering nanoemulsion stabilized by self-aggregated chitosan nanoparticles. Food Chemistry, 484, 144445. https://doi.org/10.1016/j.foodchem.2025.144445

Maphosa, Y., & Jideani, V. A. (2018). Factors Affecting the Stability of Emulsions Stabilised by Biopolymers. In Science and Technology Behind Nanoemulsions. InTech. https://doi.org/10.5772/intechopen.75308

Meng, W., Sun, H., Mu, T., & Garcia-Vaquero, M. (2024). Future trends in the field of Pickering emulsions: Stabilizers, spray-dried microencapsulation and rehydration for food applications. Trends in Food Science & Technology, 150, 104610. https://doi.org/10.1016/j.tifs.2024.104610

Mitbumrung, W., & Matsukawa, S. (2024). Cellulose nanocrystal stabilized pickering nanoemulsions and their coalescence stability studied by fluorescence microscopy. Food Hydrocolloids, 149, 109594. https://doi.org/10.1016/j.foodhyd.2023.109594

Mwangi, W. W., Ho, K.-W., Tey, B.-T., & Chan, E.-S. (2016). Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocolloids, 60, 543–550. https://doi.org/10.1016/j.foodhyd.2016.04.023

Naveedunissa, S., Meenalotchani, R., Manisha, M., Ankul Singh, S., Nirenjen, S., Anitha, K., Harikrishnan, N., & Prajapati, B. G. (2025). Advances in chitosan based nanocarriers for targetted wound healing therapies: a review. Carbohydrate Polymer Technologies and Applications, 11, 100891. https://doi.org/10.1016/j.carpta.2025.100891

Pang, B., Liu, H., & Zhang, K. (2021). Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Advances in Colloid and Interface Science, 296, 102522. https://doi.org/10.1016/j.cis.2021.102522

Pires, P. C., Mascarenhas-Melo, F., Pedrosa, K., Lopes, D., Lopes, J., Macário-Soares, A., Peixoto, D., Giram, P. S., Veiga, F., & Paiva-Santos, A. C. (2023). Polymer-based biomaterials for pharmaceutical and biomedical applications: A focus on topical drug administration. European Polymer Journal, 187, 111868. https://doi.org/10.1016/j.eurpolymj.2023.111868

Puri, V., Nagpal, M., Singh, I., Singh, M., Dhingra, G. A., Huanbutta, K., Dheer, D., Sharma, A., & Sangnim, T. (2022). A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients, 14(21), 4637. https://doi.org/10.3390/nu14214637

Risnawati, R., Muharram, M., & Jusniar, J. (2021). Isolasi dan Identifikasi Senyawa Metabolit Sekunder Ekstrak n-heksana Tumbuhan Meniran (Phyllanthus niruri Linn.). Chemica: Jurnal Ilmiah Kimia Dan Pendidikan Kimia, 22(1), 65. https://doi.org/10.35580/chemica.v22i1.21730

Roig, J. T., Oliu, G. O., Serrano, I. O., & Belloso, O. M. (2023). Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods, 12(7), 1502. https://doi.org/10.3390/foods12071502

Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A., & Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138–166. https://doi.org/10.1016/j.addr.2018.04.008

Samant, B. S., & Kaliappan, R. (2025). The use of surfactants in the extraction of active ingredients from natural resources: a comprehensive review. RSC Advances, 15(29), 23569–23587. https://doi.org/10.1039/D5RA02072G

Shah, J., Patel, D., Rananavare, D., Hudson, D., Tran, M., Schloss, R., Langrana, N., Berthiaume, F., & Kumar, S. (2025). Recent Advancements in Chitosan-Based Biomaterials for Wound Healing. Journal of Functional Biomaterials, 16(2), 45. https://doi.org/10.3390/jfb16020045

Sheikhi, M., Moghimi, R., & Rezazadeh, F. (2025). Development of bio-based nanoemulsion and pickering emulsion systems of eucalyptus essential oil stabilized by Persian Gum–HPMC–chitosan biopolymers: Toward industrial applications in functional films and sustainable biomaterials. Industrial Crops and Products, 234, 121642. https://doi.org/10.1016/j.indcrop.2025.121642

Silva, C. B., Vlad, A., Ricciarelli, R., Fassini, P. G., Suen, V. M. M., & Zingg, J.-M. (2024). Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants, 13(3), 331. https://doi.org/10.3390/antiox13030331

Singh, S., Bhardwaj, S., & Singhal, S. (2023). Current trends and regulatory aspects of nutraceutical: A comprehensive review. International Journal of Green Pharmacy, 17(2), 108.

Sonowal, D., & Wani, K. M. (2025). Comprehensive review of cellulose nanocrystals: preparation, properties, modifications and applications. Bulletin of the National Research Centre, 49(1), 55. https://doi.org/10.1186/s42269-025-01349-9

Stobba, B. K., Domagała, J., & Kasprzak, M. M. (2024). Critical Review of Techniques for Food Emulsion Characterization. Applied Sciences, 14(3), 1069. https://doi.org/10.3390/app14031069

Szymańska, E., & Winnicka, K. (2015). Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Marine Drugs, 13(4), 1819–1846. https://doi.org/10.3390/md13041819

Taghizadeh, M., Nezhad Fard, R. M., Aman Mohammadi, M., Abbasi, A., Ntsomboh-Ntsefong, G., Darani, K. K., Mohammadi, M., Khosroshahi, N. K., & Hosseini, H. (2025). Enhancing hamburger shelf life with nanoparticles, pickering nanoemulsion, and nanophytosomes of Zataria multiflora essential oil: A comparative and predictive study. LWT, 225, 117869. https://doi.org/10.1016/j.lwt.2025.117869

Tamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033

Teo, A., Goh, K. K. T., Wen, J., Oey, I., Ko, S., Kwak, H.-S., & Lee, S. J. (2016). Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chemistry, 197, 297–306. https://doi.org/10.1016/j.foodchem.2015.10.086

Velzi, I., Yslas, E. I., & Molina, M. (2025). Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms. Pharmaceutics, 17(7), 827. https://doi.org/10.3390/pharmaceutics17070827

Wang, Y., Xie, Y., Li, T., Wang, Y., Jiang, J., Zhang, X., Xia, B., Wang, S., Huang, J., & Dong, W. (2024). Pickering emulsions with high ionic strength resistance stabilized by pea protein isolate-polyglycerol conjugate particles with good biocompatibility. International Journal of Biological Macromolecules, 269, 131797. https://doi.org/10.1016/j.ijbiomac.2024.131797

Xiao, M., Xu, A., Zhang, T., & Hong, L. (2018). Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00225

Xiao, T., Ma, X., Hu, H., Xiang, F., Zhang, X., Zheng, Y., Dong, H., Adhikari, B., Wang, Q., & Shi, A. (2025). Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chemistry: X, 29, 102792. https://doi.org/10.1016/j.fochx.2025.102792

Xin, X., Zhang, H., Xu, G., Tan, Y., Zhang, J., & Lv, X. (2013). Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 418, 60–67. https://doi.org/10.1016/j.colsurfa.2012.10.065

Xue, J., & Luo, Y. (2023). Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: a comprehensive review on preparation methods and encapsulation mechanisms. Journal of Future Foods, 3(2), 99–114. https://doi.org/10.1016/j.jfutfo.2022.12.002

Yin, L., Cao, Y., Wang, M., Deng, Y., Li, F., Kong, B., Liu, Q., & Wang, H. (2025). Effect of adding Pickering emulsion containing oregano essential oil on the storage quality of Harbin red sausage. Food Bioscience, 68, 106484. https://doi.org/10.1016/j.fbio.2025.106484

Zhang, M., Li, X., Zhou, L., Chen, W., & Marchioni, E. (2023). Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods, 12(3), 482. https://doi.org/10.3390/foods12030482

Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT, 153, 112506. https://doi.org/10.1016/j.lwt.2021.112506


Full Text: PDF


DOI : https://doi.org/10.33005/jtp.v19i2.5525

Refbacks

  • There are currently no refbacks.


Creative Commons License
Copyright @ 2007 Department of Food Technology Universitas Pembangunan Nasional "Veteran" Jawa Timur
______________________________________________________________________

Pusat Publikasi | Teknologi Pangan | Fakultas Teknik (Gedung Giri Reka ) | Universitas Pembangunan Nasional "Veteran" Jawa Timur, Indonesia

Jln. Raya Rungkut Madya, Gunung Anyar Surabaya, 60294 Email : jtp@upnjatim.ac.id